
8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 1 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

Signaling and video calling

Sign inSearch MDN

English▼

WebRTC allows real-time, peer-to-peer, media exchange between two devices. A connection is
established through a discovery and negotiation process called signaling. This tutorial will
guide you through building a two-way video-call.

WebRTC is a fully peer-to-peer technology for the real-time exchange of audio, video, and
data, with one central caveat. A form of discovery and media format negotiation must take
place, as discussed elsewhere, in order for two devices on different networks to locate one
another. This process is called signaling and involves both devices connecting to a third,
mutually agreed-upon server. Through this third server, the two devices can locate one another,
and exchange negotiation messages.

In this article, we will further enhance the WebSocket chat first created as part of our

WebSocket documentation (this article link is forthcoming; it isn't actually online yet) to support
opening a two-way video call between users. You can try out this example on Glitch, and you
can remix the example to experiment with it as well. You can also look at the full project on
GitHub.

Note: If you try out the example on Glitch, please note that any changes made to the code

will immediately reset any connections. In addition, there is a short timeout period; the

Glitch instance is for quick experiments and testing only.

Establishing a WebRTC connection between two devices requires the use of a signaling

server to resolve how to connect them over the internet. A signaling server's job is to serve as
an intermediary to let two peers find and establish a connection while minimizing exposure of
potentially private information as much as possible. How do we create this server and how
does the signaling process actually work?

First we need the signaling server itself. WebRTC doesn't specify a transport mechanism for
the signaling information. You can use anything you like, from WebSocket to
XMLHttpRequest to carrier pigeons to exchange the signaling information between the two
peers.

It's important to note that the server doesn't need to understand or interpret the signaling data

The signaling server

Related Topics

▼ WebRTC Guides

▼ WebRTC Tutorials

▼ Interfaces

WebRTC API

WebRTC Architecture

WebRTC Basics

WebRTC Protocols

Dealing with connectivity

Overview of WebRTC interfaces

Lifetime of a WebRTC Session

Using data channels

Interoperability with adapter.js

Taking still photos from the
camera

A simple data channel example

RTCPeerConnection

RTCSessionDescription

RTCIceCandidate

RTCPeerConnectionIceEvent

MessageEvent

MediaStream

RTCStatsReport

RTCIdentityEvent

RTCIdentityErrorEvent

MediaStreamEvent

MediaStreamTrack

MediaDevices

The signaling server

The client application

Next steps

See also

Technologies
▼

References
& Guides
▼

Feedback
▼

https://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/users/account/signup-landing?next=/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Session_lifetime%23Establishing_a_connection
https://webrtc-from-chat.glitch.me/
https://webrtc-from-chat.glitch.me/
https://glitch.com/edit/%23!/remix/webrtc-from-chat
https://github.com/mdn/samples-server/tree/master/s/webrtc-from-chat
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket_API
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Architecture
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/WebRTC_Basics
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Protocols
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Connectivity
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Overview
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Session_lifetime
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Using_data_channels
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/adapter.js
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Taking_still_photos
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Simple_RTCDataChannel_sample
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCSessionDescription
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnectionIceEvent
https://developer.mozilla.org/en-US/docs/Web/API/MessageEvent
https://developer.mozilla.org/en-US/docs/Web/API/MediaStream
https://developer.mozilla.org/en-US/docs/Web/API/RTCStatsReport
https://developer.mozilla.org/en-US/docs/Web/API/RTCIdentityEvent
https://developer.mozilla.org/en-US/docs/Web/API/RTCIdentityErrorEvent
https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamEvent
https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamTrack
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 2 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

content. Although it's SDP, even this doesn't matter so much: the content of the message going
through the signaling server is, in effect, a black box. What does matter is when the ICE
subsystem instructs you to send signaling data to the other peer, you do so, and the other peer
knows how to receive this information and deliver it to its own ICE subsystem. All you have to
do is channel the information back and forth. The contents don't matter at all to the signaling
server.

Readying the chat server for signaling

Our chat server uses the WebSocket API to send information as JSON strings between each
client and the server. The server supports several message types to handle tasks, such as
registering new users, setting usernames, and sending public chat messages.

To allow the server to support signaling and ICE negotiation, we need to update the code. We'll
have to allow directing messages to one specific user instead of broadcasting to all connected
users, and ensure unrecognized message types are passed through and delivered, without the
server needing to know what they are. This lets us send signaling messages using this same
server, instead of needing a separate server.

Let's take a look which changes we need to make to the chat server support WebRTC
signaling. This is in the file chatserver.js .

First up is the addition of the function sendToOneUser() . As the name suggests, this sends a
stringified JSON message to a particular username.

This function iterates over the list of connected users until it finds one matching the specified
username, then sends the message to that user. The parameter msgString is a stringified
JSON object. We could have made it receive our original message object, but in this example
it's more efficient this way. Since the message has already been stringified, we can send it with
no further processing. Each entry in connectionArray is a WebSocket object, so we can
just call its send() method directly.

Our original chat demo didn't support sending messages to a specific user. The next task is to
update the main WebSocket message handler to support doing so. This involves a change
near the end of the "connection" message handler:

function sendToOneUser(target, msgString) {
 var isUnique = true;
 var i;

 for (i=0; i<connectionArray.length; i++) {
 if (connectionArray[i].username === target) {
 connectionArray[i].send(msgString);
 break;
 }
 }
}

1
2
3
4
5
6
7
8
9
10
11

▶︎ Useful lists

▶︎ Contribute

MediaDevices

Documentation:

https://developer.mozilla.org/en-US/docs/Glossary/SDP
https://developer.mozilla.org/en-US/docs/Glossary/ICE
https://github.com/mdn/samples-server/tree/master/s/websocket-chat
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket_API
https://developer.mozilla.org/en-US/docs/Glossary/JSON
https://github.com/mdn/samples-server/tree/master/s/webrtc-from-chat/chatserver.js
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket/send
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices
https://developer.mozilla.org/en-US/docs/MDN

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 3 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

This code now looks at the pending message to see if it has a target property. If that
property is present, it specifies the username of the client to which the message is to be sent,
and we call sendToOneUser() to send the message to them. Otherwise, the message is
broadcast to all users by iterating over the connection list, sending the message to each user.

As the existing code allows the sending of arbitrary message types, no additional changes are
required. Our clients can now send messages of unknown types to any specific user, letting
them send signaling messages back and forth as desired.

That's all we need to change on the server side of the equation. Now let's consider the
signaling protocol we will implement.

Designing the signaling protocol

Now that we've built a mechanism for exchanging messages, we need a protocol defining how
those messages will look. This can be done in a number of ways; what's demonstrated here is
just one possible way to structure signaling messages.

This example's server uses stringified JSON objects to communicate with its clients. This
means our signaling messages will be in JSON format, with contents which specify what kind of
messages they are as well as any additional information needed in order to handle the
messages properly.

Exchanging session descriptions

When starting the signaling process, an offer is created by the user initiating the call. This offer
includes a session description, in SDP format, and needs to be delivered to the receiving user,
which we'll call the callee. The callee responds to the offer with an answer message, also
containing an SDP description. Our signaling server will use WebSocket to transmit offer
messages with the type "video-offer" , and answer messages with the type "video-
answer" . These messages have the following fields:

type
The message type; either "video-offer" or "video-answer" .

name

if (sendToClients) {
 var msgString = JSON.stringify(msg);
 var i;

 if (msg.target && msg.target !== undefined && msg.target.length !== 0) {
 sendToOneUser(msg.target, msgString);
 } else {
 for (i=0; i<connectionArray.length; i++) {
 connectionArray[i].send(msgString);
 }
 }
}

1
2
3
4
5
6
7
8
9
10
11
12

https://developer.mozilla.org/en-US/docs/Glossary/SDP

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 4 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

The sender's username.

target
The username of the person to receive the description (if the caller is sending the message,
this specifies the callee, and vice-versa).

sdp
The SDP (Session Description Protocol) string describing the local end of the connection
from the perspective of the sender (or the remote end of the connection from the receiver's
point of view).

At this point, the two participants know which codecs and codec parameters are to be used for
this call. They still don't know how to transmit the media data itself though. This is where
Interactive Connectivity Establishment (ICE) comes in.

Exchanging ICE candidates

Two peers need to exchange ICE candidates to negotiate the actual connection between them.
Every ICE candidate describes a method that the sending peer is able to use to communicate.
Each peer sends candidates in the order they're discovered, and keeps sending candidates
until it runs out of suggestions, even if media has already started streaming.

An icecandidate event is sent to the RTCPeerConnection to complete the process of
adding a local description using pc.setLocalDescription(offer) .

Once the two peers agree upon a mutually-compatible candidate, that candidate's SDP is used
by each peer to construct and open a connection, through which media then begins to flow. If
they later agree on a better (usually higher-performance) candidate, the stream may change
formats as needed.

Though not currently supported, a candidate received after media is already flowing could
theoretically also be used to downgrade to a lower-bandwidth connection if needed.

Each ICE candidate is sent to the other peer by sending a JSON message of type "new-ice-
candidate" over the signaling server to the remote peer. Each candidate message include
these fields:

type
The message type: "new-ice-candidate" .

target
The username of the person with whom negotiation is underway; the server will direct the
message to this user only.

candidate
The SDP candidate string, describing the proposed connection method. You typically don't
need to look at the contents of this string. All your code needs to do is route it through to the
remote peer using the signaling server.

Each ICE message suggests a communication protocol (TCP or UDP), IP address, port

https://developer.mozilla.org/en-US/docs/Web/Media/Formats/WebRTC_codecs
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/codecs_parameter
https://developer.mozilla.org/en-US/docs/Glossary/ICE
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/icecandidate_event
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 5 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

number, connection type (for example, whether the specified IP is the peer itself or a relay
server), along with other information needed to link the two computers together. This includes
NAT or other networking complexity.

Note: The important thing to note is this: the only thing your code is responsible for during

ICE negotiation is accepting outgoing candidates from the ICE layer and sending them

across the signaling connection to the other peer when your onicecandidate handler is

executed, and receiving ICE candidate messages from the signaling server (when the "new-

ice-candidate" message is received) and delivering them to your ICE layer by calling

RTCPeerConnection.addIceCandidate() . That's it.

The contents of the SDP are irrelevant to you in essentially all cases. Avoid the temptation to

try to make it more complicated than that until you really know what you're doing. That way

lies madness.

All your signaling server now needs to do is send the messages it's asked to. Your workflow
may also demand login/authentication functionality, but such details will vary.

Note: The onicecandidate Event and createAnswer() Promise are both async calls

which are handled separately. Be sure that your signaling does not change order! For

example addIceCandidate() with the server's ice candidates must be called after

setting the answer with setRemoteDescription() .

Signaling transaction Now

The signaling process involves this exchange of messages between two peers using an
intermediary, the signaling server. The exact process will vary, of course, but in general there
are a few key points at which signaling messages get handled:

The signaling process involves this exchange of messages among a number of points:

Each user's client running within a web browser

Each user's web browser

The signaling server

The web server hosting the chat service

Imagine that Naomi and Priya are engaged in a discussion using the chat software, and Naomi
decides to open a video call between the two. Here's the expected sequence of events:

https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/onicecandidate
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/addIceCandidate
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/onicecandidate
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/createAnswer
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/addIceCandidate
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/setRemoteDescription

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 6 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

Priya (Callee)Signaling ServerNaomi (Caller)

Web App Web Browser Web App

1. Create an
RTCPeerConnection

2. Call getUserMedia() to
access the webcam and
microphone

3. Promise fulfilled: add the
local stream’s tracks by
calling
RTCPeerConnection.ad
dTrack()

invite()

Web Browser

1. Create an SDP offer by
calling
RTCPeerConnection.cr
eateOffer()

3. Promise fulfilled: set the
description of Naomi’s
end of the call by calling
RTCPeerConnection.se
tLocalDescription()

4. Promise fulfilled: send the
offer through the
signaling server to Priya in
a message of type
“video-offer”

handleNegotiationNeededEvent()

Message: “video-offer”

ICE layer starts
sending candidates

to Priya

1. Create an
RTCPeerConnection

2. Create an
RTCSessionDescriptio
n using the received SDP
offer

3. Call
RTCPeerConnection.se
tRemoteDescription()
to tell WebRTC about
Naomi’s configuration.

4. Call getUserMedia() to
access the webcam and
microphone

5. Promise fulfilled: add the
local stream’s tracks by
calling
RTCPeerConnection.ad
dTrack()

6. Promise fulfilled: call
RTCPeerConnection.cr
eateAnswer() to create
an SDP answer to send to
Naomi

7. Promise fulfilled:
configure Priya’s end of
the connection by match
the generated answer by
calling
RTCPeerConnection.se
tLocalDescription()

8. Promise fulfilled: send the
SDP answer through the
signaling server to Naomi
in a message of type
“video-answer”

handleVideoOfferMsg()Message: “video-offer”

Message: “video-answer”

ICE layer starts
sending candidates

to Naomi

1. Create an
RTCSessionDescriptio
n using the received SDP
answer

2. Pass the session
description to
RTCPeerConnection.se
tRemoteDescription()
to configure Naomi’s
WebRTC layer to know
how Priya’s end of the
connection is configured

handleVideoAnswerMsg() Message: “video-answer ”

Receive “video-offer”
message and forward it to
Priya

on.message()

Receive “video-answer”
message and forward it to
Naomi

on.message()

Even
t: n
eg
ot
ia
ti
on
ne
ed
ed

Ready to negotiate,
so ask the caller to

start doing so

We'll see this detailed more over the course of this article.

ICE candidate exchange process

When each peer's ICE layer begins to send candidates, it enters into an exchange among the
various points in the chain that looks like this:

https://mdn.mozillademos.org/files/12363/WebRTC%20-%20Signaling%20Diagram.svg

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 7 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

Priya (Callee)Signaling ServerNaomi (Caller)

Receives the candidate and
sends it to Priya’s client
through the signaling server
as a “new-ice-
candidate” message

handleICECandidateEvent()

Generate an ICE candidate
re p resen ted by an SDP
string

Event: icecandidate

Receive “new-ice-
candidate” message and
forward it to Priya

on.message()Message: “new-ice-candidate” Message: “new-ice-candidate”

1. Create an
RTCIceCandidate object
using the SDP provided in
the candidate .

2. Deliver the candidate to
Priya’s ICE layer by
passing it to
RTCPeerConnection.ad
dIceCandidate()

handleNewIceCandidateMsg()

Receives the candidate and
sends it to Naomi’s client
through the signaling server
as a “new-ice-
candidate” message

handleICECandidateEvent()

Generate an ICE candidate
re p resen ted by an SDP
string

Event: icecandidate

Receive “new-ice-
candidate” message and
forward it to Naomi

on.message() Message: “new-ice-candidate”Message: “new-ice-candidate”

1. Create an
RTCIceCandidate object
using the SDP provided in
the candidate .

2. Deliver the candidate to
Naomi’s ICE layer by
passing it to
RTCPeerConnection.ad
dIceCandidate()

handleNewIceCandidateMsg()

Web App Web Browser Web Browser Web App

Process repeats until both ICE layers agree on a candidate.

Each side sends candidates to the other as it receives them from their local ICE layer; there is
no taking turns or batching of candidates. As soon as the two peers agree upon one candidate
that they can both use to exchange the media, media begins to flow. Each peer continues to
send candidates until it runs out of options, even after the media has already begun to flow.
This is done in hopes of identifying even better options than the one initially selected.

If conditions change—for example the network connection deteriorates—one or both peers
might suggest switching to a lower-bandwidth media resolution, or to an alternative codec. This
triggers a new exchange of candidates, after which a another media format and/or codec
change may take place. You can learn more about the codecs which WebRTC requires
browsers to support, which additional codecs are supported by which browsers, and how to
choose the best codecs to use in the guide Codecs used by WebRTC.

Optionally, see RFC 8445: Interactive Connectivity Establishment, section 2.3 ("Negotiating
Candidate Pairs and Concluding ICE") if you want greater understanding of how this process is
completed inside the ICE layer. You should note that candidates are exchanged and media
starts to flow as soon as the ICE layer is satisfied. This is all taken care of behind the scenes.
Our role is to simply send the candidates, back and forth, through the signaling server.

The core to any signaling process is its message handling. It's not necessary to use
WebSockets for signaling, but it is a common solution. You should, of course, select a

The client application

https://mdn.mozillademos.org/files/12365/WebRTC%20-%20ICE%20Candidate%20Exchange.svg
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/WebRTC_codecs
https://tools.ietf.org/html/rfc8445
https://tools.ietf.org/html/rfc5245%23section-2.3

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 8 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

mechanism for exchanging signaling information that is appropriate for your application.

Let's update the chat client to support video calling.

Updating the HTML

The HTML for our client needs a location for video to be presented. This requires video
elements, and a button to hang up the call:

The page structure defined here is using <div> elements, giving us full control over the page
layout by enabling the use of CSS. We'll skip layout detail in this guide, but take a look at the
CSS on Github to see how we handled it. Take note of the two <video> elements, one for
your self-view, one for the connection, and the <button> element.

The <video> element with the id "received_video " will present video received from the
connected user. We specify the autoplay attribute, ensuring once the video starts arriving, it
immediately plays. This removes any need to explicitly handle playback in our code. The
"local_video " <video> element presents a preview of the user's camera; specifiying the
muted attribute, as we don't need to hear local audio in this preview panel.

Finally, the "hangup-button " <button> , to disconnect from a call, is defined and configured
to start disabled (setting this as our default for when no call is connected) and apply the
function hangUpCall() on click. This function's role is to close the call, and send a signalling
server notification to the other peer, requesting it also close.

The JavaScript code

We'll divide this code into functional areas to more easily describe how it works. The main body
of this code is found in the connect() function: it opens up a WebSocket server on port
6503, and establishes a handler to receive messages in JSON object format. This code
generally handles text chat messages as it did previously.

Sending messages to the signaling server

Throughout our code, we call sendToServer() in order to send messages to the signaling
server. This function uses the WebSocket connection to do its work:

<div class="flexChild" id="camera-container">
 <div class="camera-box">
 <video id="received_video" autoplay></video>
 <video id="local_video" autoplay muted></video>
 <button id="hangup-button" onclick="hangUpCall();" disabled>
 Hang Up
 </button>
 </div>
</div>

1
2
3
4
5
6
7
8
9

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://github.com/mdn/samples-server/tree/master/s/webrtc-from-chat/chat.css
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 9 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

The message object passed into this function is converted into a JSON string by calling
JSON.stringify() , then we call the WebSocket connection's send() function to transmit
the message to the server.

UI to start a call

The code which handles the "userlist" message calls handleUserlistMsg() . Here we
set up the handler for each connected user in the user list displayed to the left of the chat
panel. This function receives a message object whose users property is an array of strings
specifying the user names of every connected user.

After getting a reference to the which contains the list of user names into the variable
listElem , we empty the list by removing each of its child elements.

Note: Obviously, it would be more eUcient to update the list by adding and removing

individual users instead of rebuilding the whole list every time it changes, but this is good

enough for the purposes of this example.

Then we iterate over the array of user names using forEach() . For each name, we create a
new element, then create a new text node containing the user name using
createTextNode() . That text node is added as a child of the element. Next, we set a
handler for the click event on the list item, that clicking on a user name calls our invite()
method, which we'll look at in the next section.

Finally, we append the new item to the that contains all of the user names.

function sendToServer(msg) {
 var msgJSON = JSON.stringify(msg);

 connection.send(msgJSON);
}

1
2
3
4
5

function handleUserlistMsg(msg) {
 var i;
 var listElem = document.querySelector(".userlistbox");

 while (listElem.firstChild) {
 listElem.removeChild(listElem.firstChild);
 }

 msg.users.forEach(function(username) {
 var item = document.createElement("li");
 item.appendChild(document.createTextNode(username));
 item.addEventListener("click", invite, false);

 listElem.appendChild(item);
 });
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket/send
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/ul
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/li
https://developer.mozilla.org/en-US/docs/Web/API/Document/createTextNode
https://developer.mozilla.org/en-US/docs/Web/Events/click

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 10 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

Starting a call

When the user clicks on a username they want to call, the invite() function is invoked as
the event handler for that click event:

This begins with a basic sanity check: is the user already connected? If there's already a
RTCPeerConnection , they obviously can't make a call. Then the name of the user that was
clicked upon is obtained from the event target's textContent property, and we check to be
sure that it's not the same user that's trying to start the call.

Then we copy the name of the user we're calling into the variable targetUsername and call
createPeerConnection() , a function which will create and do basic configuration of the
RTCPeerConnection .

Once the RTCPeerConnection has been created, we request access to the user's camera
and microphone by calling MediaDevices.getUserMedia() , which is exposed to us
through the Navigator.mediaDevices.getUserMedia property. When this succeeds,
fulfilling the returned promise, our then handler is executed. It receives, as input, a
MediaStream object representing the stream with audio from the user's microphone and
video from their webcam.

Note: We could restrict the set of permitted media inputs to a speciWc device or set of

var mediaConstraints = {
 audio: true, // We want an audio track
 video: true // ...and we want a video track
};

function invite(evt) {
 if (myPeerConnection) {
 alert("You can't start a call because you already have one open!");
 } else {
 var clickedUsername = evt.target.textContent;

 if (clickedUsername === myUsername) {
 alert("I'm afraid I can't let you talk to yourself. That would be weird."
 return;
 }

 targetUsername = clickedUsername;
 createPeerConnection();

 navigator.mediaDevices.getUserMedia(mediaConstraints)
 .then(function(localStream) {
 document.getElementById("local_video").srcObject = localStream;
 localStream.getTracks().forEach(track => myPeerConnection.addTrack(track
 })
 .catch(handleGetUserMediaError);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

https://developer.mozilla.org/en-US/docs/Web/Events/click
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/mediaDevices/getUserMedia
https://developer.mozilla.org/en-US/docs/Web/API/MediaStream

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 11 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

devices by calling navigator.mediaDevices.enumerateDevices() to get a list of

devices, Wltering the resulting list based on our desired criteria, then using the selected

devices' deviceId values in the deviceId Weld of the the mediaConstraints object

passed into getUserMedia() . In practice, this is rarely if ever necessary, since most of

that work is done for you by getUserMedia() .

We attach the incoming stream to the local preview <video> element by setting the element's
srcObject property. Since the element is configured to automatically play incoming video,
the stream begins playing in our local preview box.

We then iterate over the tracks in the stream, calling addTrack() to add each track to the
RTCPeerConnection . Even though the connection is not fully established yet, you can begin
sending data when you feel it's appropriate to do so. Media received before the ICE negotiation
is completed may be used to help ICE decide upon the best connectivity approach to take, thus
aiding in the negotiation process.

Note that for native apps, such as a phone application, you should not begin sending until the
connection has been accepted at both ends, at a minimum, to avoid inadvertently sending
video and/or audio data when the user isn't prepared for it.

As soon as media is attached to the RTCPeerConnection , a negotiationneeded event is
triggered at the connection, so that ICE negotiation can be started.

If an error occurs while trying to get the local media stream, our catch clause calls
handleGetUserMediaError() , which displays an appropriate error to the user as required.

Handling getUserMedia() errors

If the promise returned by getUserMedia() concludes in a failure, our
handleGetUserMediaError() function performs.

function handleGetUserMediaError(e) {
 switch(e.name) {
 case "NotFoundError":
 alert("Unable to open your call because no camera and/or microphone"
 "were found.");
 break;
 case "SecurityError":
 case "PermissionDeniedError":
 // Do nothing; this is the same as the user canceling the call.
 break;
 default:
 alert("Error opening your camera and/or microphone: " + e.message);
 break;
 }

 closeVideoCall();
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/enumerateDevices
https://developer.mozilla.org/en-US/docs/Web/API/MediaTrackConstraints/deviceId
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/srcObject
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/addTrack
https://developer.mozilla.org/en-US/docs/Web/Events/negotiationneeded

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 12 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

An error message is displayed in all cases but one. In this example, we ignore
"SecurityError" and "PermissionDeniedError" results, treating refusal to grant
permission to use the media hardware the same as the user canceling the call.

Regardless of why an attempt to get the stream fails, we call our closeVideoCall()
function to shut down the RTCPeerConnection , and release any resources already allocated
by the process of attempting the call. This code is designed to safely handle partially-started
calls.

Creating the peer connection

The createPeerConnection() function is used by both the caller and the callee to
construct their RTCPeerConnection objects, their respective ends of the WebRTC
connection. It's invoked by invite() when the caller tries to start a call, and by
handleVideoOfferMsg() when the callee receives an offer message from the caller.

When using the RTCPeerConnection() constructor, we will specify an
RTCConfiguration -compliant object providing configuration parameters for the connection.
We use only one of these in this example: iceServers . This is an array of objects describing
STUN and/or TURN servers for the ICE layer to use when attempting to establish a route
between the caller and the callee. These servers are used to determine the best route and
protocols to use when communicating between the peers, even if they're behind a firewall or
using NAT.

Note: You should always use STUN/TURN servers which you own, or which you have

speciWc authorization to use. This example is using a known public STUN server but abusing

these is bad form.

Each object in iceServers contains at least a urls field providing URLs at which the
specified server can be reached. It may also provide username and credential values to
allow authentication to take place, if needed.

function createPeerConnection() {
 myPeerConnection = new RTCPeerConnection({
 iceServers: [// Information about ICE servers - Use your own!
 {
 urls: "stun:stun.stunprotocol.org"
 }
]
 });

 myPeerConnection.onicecandidate = handleICECandidateEvent;
 myPeerConnection.ontrack = handleTrackEvent;
 myPeerConnection.onnegotiationneeded = handleNegotiationNeededEvent;
 myPeerConnection.onremovetrack = handleRemoveTrackEvent;
 myPeerConnection.oniceconnectionstatechange = handleICEConnectionStateChangeEvent
 myPeerConnection.onicegatheringstatechange = handleICEGatheringStateChangeEvent
 myPeerConnection.onsignalingstatechange = handleSignalingStateChangeEvent
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCConfiguration
https://developer.mozilla.org/en-US/docs/Glossary/ICE
https://developer.mozilla.org/en-US/docs/Glossary/NAT

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 13 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

After creating the RTCPeerConnection , we set up handlers for the events that matter to us.

The first three of these event handlers are required; you have to handle them to do anything
involving streamed media with WebRTC. The rest aren't strictly required but can be useful, and
we'll explore them. There are a few other events available that we're not using in this example,
as well. Here's a summary of each of the event handlers we will be implementing:

RTCPeerConnection.onicecandidate
The local ICE layer calls your icecandidate event handler, when it needs you to transmit
an ICE candidate to the other peer, through your signaling server. See Sending ICE
candidates for more information and to see the code for this example.

RTCPeerConnection.ontrack
This handler for the track event is called by the local WebRTC layer when a track is added
to the connection. This lets you connect the incoming media to an element to display it, for
example. See Receiving new streams for details.

RTCPeerConnection.onnegotiationneeded
This function is called whenever the WebRTC infrastructure needs you to start the session
negotiation process anew. Its job is to create and send an offer, to the callee, asking it to
connect with us. See Starting negotiation to see how we handle this.

RTCPeerConnection.onremovetrack
This counterpart to ontrack is called to handle the removetrack event; it's sent to the
RTCPeerConnection when the remote peer removes a track from the media being sent.
See Handling the removal of tracks.

RTCPeerConnection.oniceconnectionstatechange
The iceconnectionstatechange event is sent by the ICE layer to let you know about
changes to the state of the ICE connection. This can help you know when the connection
has failed, or been lost. We'll look at the code for this example in ICE connection state
below.

RTCPeerConnection.onicegatheringstatechange
The ICE layer sends you the icegatheringstatechange event, when the ICE agent's
process of collecting candidates shifts, from one state to another (such as starting to gather
candidates or completing negotiation). See ICE gathering state below.

RTCPeerConnection.onsignalingstatechange
The WebRTC infrastructure sends you the signalingstatechange message when the
state of the signaling process changes (or if the connection to the signaling server changes).
See Signaling state to see our code.

Starting negotiation

Once the caller has created its RTCPeerConnection , created a media stream, and added its
tracks to the connection as shown in Starting a call, the browser will deliver a
negotiationneeded event to the RTCPeerConnection to indicate that it's ready to begin
negotiation with the other peer. Here's our code for handling the negotiationneeded event:

https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/onicecandidate
https://developer.mozilla.org/en-US/docs/Web/Events/icecandidate
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/ontrack
https://developer.mozilla.org/en-US/docs/Web/Events/track
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/onnegotiationneeded
https://developer.mozilla.org/en-US/docs/Web/Events/removetrack
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/oniceconnectionstatechange
https://developer.mozilla.org/en-US/docs/Web/Events/iceconnectionstatechange
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/onicegatheringstatechange
https://developer.mozilla.org/en-US/docs/Web/Events/icegatheringstatechange
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/onsignalingstatechange
https://developer.mozilla.org/en-US/docs/Web/Events/signalingstatechange
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling%23Signaling_state
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/Events/negotiationneeded
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/Events/negotiationneeded

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 14 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

To start the negotiation process, we need to create and send an SDP offer to the peer we want
to connect to. This offer includes a list of supported configurations for the connection, including
information about the media stream we've added to the connection locally (that is, the video we
want to send to the other end of the call), and any ICE candidates gathered by the ICE layer
already. We create this offer by calling myPeerConnection.createOffer() .

When createOffer() succeeds (fulfilling the promise), we pass the created offer information
into myPeerConnection.setLocalDescription() , which configures the connection and
media configuration state for the caller's end of the connection.

Note: Technically speaking, the string returned by createOffer() is an RFC 3264 oaer.

We know the description is valid, and has been set, when the promise returned by
setLocalDescription() is fulfilled. This is when we send our offer to the other peer by
creating a new "video-offer" message containing the local description (now the same as
the offer), then sending it through our signaling server to the callee. The offer has the following
members:

type
The message type: "video-offer" .

name
The caller's username.

target
The name of the user we wish to call.

sdp
The SDP string describing the offer.

If an error occurs, either in the initial createOffer() or in any of the fulfillment handlers that
follow, an error is reported by invoking our reportError() function.

Once setLocalDescription() 's fulfillment handler has run, the ICE agent begins sending

function handleNegotiationNeededEvent() {
 myPeerConnection.createOffer().then(function(offer) {
 return myPeerConnection.setLocalDescription(offer);
 })
 .then(function() {
 sendToServer({
 name: myUsername,
 target: targetUsername,
 type: "video-offer",
 sdp: myPeerConnection.localDescription
 });
 })
 .catch(reportError);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/createOffer
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/setLocalDescription
https://tools.ietf.org/html/rfc3264

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 15 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

icecandidate events to the RTCPeerConnection , one for each potential configuration it
discovers. Our handler for the icecandidate event is responsible for transmitting the
candidates to the other peer.

Session negotiation

Now that we've started negotiation with the other peer and have transmitted an offer, let's look
at what happens on the callee's side of the connection for a while. The callee receives the offer
and calls handleVideoOfferMsg() function to process it. Let's see how the callee handles
the "video-offer" message.

Handling the invitation

When the offer arrives, the callee's handleVideoOfferMsg() function is called with the
"video-offer" message that was received. This function needs to do two things. First, it
needs to create its own RTCPeerConnection and add the tracks containing the audio and
video from its microphone and webcam to that. Second, it needs to process the received offer,
constructing and sending its answer.

function handleVideoOfferMsg(msg) {
 var localStream = null;

 targetUsername = msg.name;
 createPeerConnection();

 var desc = new RTCSessionDescription(msg.sdp);

 myPeerConnection.setRemoteDescription(desc).then(function () {
 return navigator.mediaDevices.getUserMedia(mediaConstraints);
 })
 .then(function(stream) {
 localStream = stream;
 document.getElementById("local_video").srcObject = localStream;

 localStream.getTracks().forEach(track => myPeerConnection.addTrack(track
 })
 .then(function() {
 return myPeerConnection.createAnswer();
 })
 .then(function(answer) {
 return myPeerConnection.setLocalDescription(answer);
 })
 .then(function() {
 var msg = {
 name: myUsername,
 target: targetUsername,
 type: "video-answer",
 sdp: myPeerConnection.localDescription
 };

 sendToServer(msg);
 })

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

https://developer.mozilla.org/en-US/docs/Web/Events/icecandidate
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 16 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

This code is very similar to what we did in the invite() function back in Starting a call. It
starts by creating and configuring an RTCPeerConnection using our
createPeerConnection() function. Then it takes the SDP offer from the received
"video-offer" message and uses it to create a new RTCSessionDescription object
representing the caller's session description.

That session description is then passed into
myPeerConnection.setRemoteDescription() . This establishes the received offer as
the description of the remote (caller's) end of the connection. If this is successful, the promise
fulfillment handler (in the then() clause) starts the process of getting access to the callee's
camera and microphone using getUserMedia() , adding the tracks to the connection, and so
forth, as we saw previously in invite() .

Once the answer has been created using myPeerConnection.createAnswer() , the
description of the local end of the connection is set to the answer's SDP by calling
myPeerConnection.setLocalDescription() , then the answer is transmitted through
the signaling server to the caller to let them know what the answer is

Any errors are caught and passed to handleGetUserMediaError() , described in Handling
getUserMedia() errors.

Note: As is the case with the caller, once the setLocalDescription() fulWllment

handler has run, the browser begins Wring icecandidate events that the callee must

handle, one for each candidate that needs to be transmitted to the remote peer.

Sending ICE candidates

The ICE negotiation process involves each peer sending candidates to the other, repeatedly,
until it runs out of potential ways it can support the RTCPeerConnection 's media transport
needs. Since ICE doesn't know about your signaling server, your code handles transmission of
each candidate in your handler for the icecandidate event.

Your onicecandidate handler receives an event whose candidate property is the SDP
describing the candidate (or is null to indicate that the ICE layer has run out of potential
configurations to suggest). The contents of candidate are what you need to transmit using
your signaling server. Here's our example's implementation:

 .catch(handleGetUserMediaError);
}

34
35

function handleICECandidateEvent(event) {
 if (event.candidate) {
 sendToServer({
 type: "new-ice-candidate",
 target: targetUsername,
 candidate: event.candidate
 });
 }
}

1
2
3
4
5
6
7
8
9

https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCSessionDescription
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/setRemoteDescription
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/createAnswer
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/setLocalDescription
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling%23Handling_getUserMedia()_errors
https://developer.mozilla.org/en-US/docs/Web/Events/icecandidate
https://developer.mozilla.org/en-US/docs/Web/Events/icecandidate
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/onicecandidate

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 17 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

This builds an object containing the candidate, then sends it to the other peer using the
sendToServer() function previously described in Sending messages to the signaling server.
The message's properties are:

type
The message type: "new-ice-candidate" .

target
The username the ICE candidate needs to be delivered to. This lets the signaling server
route the message.

candidate
The SDP representing the candidate the ICE layer wants to transmit to the other peer.

The format of this message (as is the case with everything you do when handling signaling) is
entirely up to you, depending on your needs; you can provide other information as required.

Note: It's important to keep in mind that the icecandidate event is not sent when ICE

candidates arrive from the other end of the call. Instead, they're sent by your own end of the

call so that you can take on the job of transmitting the data over whatever channel you

choose. This can be confusing when you're new to WebRTC.

Receiving ICE candidates

The signaling server delivers each ICE candidate to the destination peer using whatever
method it chooses; in our example this is as JSON objects, with a type property containing
the string "new-ice-candidate" . Our handleNewICECandidateMsg() function is called
by our main WebSocket incoming message code to handle these messages:

This function constructs an RTCIceCandidate object by passing the received SDP into its
constructor, then delivers the candidate to the ICE layer by passing it into
myPeerConnection.addIceCandidate() . This hands the fresh ICE candidate to the local
ICE layer, and finally, our role in the process of handling this candidate is complete.

Each peer sends to the other peer a candidate for each possible transport configuration that it
believes might be viable for the media being exchanged. At some point, the two peers agree
that a given candidate is a good choice and they open the connection and begin to share
media. It's important to note, however, that ICE negotiation does not stop once media is
flowing. Instead, candidates may still keep being exchanged after the conversation has begun,
either while trying to find a better connection method, or simply because they were already in
transport when the peers successfully established their connection.

function handleNewICECandidateMsg(msg) {
 var candidate = new RTCIceCandidate(msg.candidate);

 myPeerConnection.addIceCandidate(candidate)
 .catch(reportError);
}

1
2
3
4
5
6

https://developer.mozilla.org/en-US/docs/Web/Events/icecandidate
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/addIceCandidate

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 18 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

In addition, if something happens to cause a change in the streaming scenario, negotiation will
begin again, with the negotiationneeded event being sent to the RTCPeerConnection ,
and the entire process starts again as described before. This can happen in a variety of
situations, including:

Changes in the network status, such as a bandwidth change, transitioning from WiFi to
cellular connectivity, or the like.

Switching between the front and rear cameras on a phone.

A change to the configuration of the stream, such as its resolution or frame rate.

Receiving new streams

When new tracks are added to the RTCPeerConnection— either by calling its addTrack()
method or because of renegotiation of the stream's format—a track event is set to the
RTCPeerConnection for each track added to the connection. Making use of newly added
media requires implementing a handler for the track event. A common need is to attach the
incoming media to an appropriate HTML element. In our example, we add the track's stream to
the <video> element that displays the incoming video:

The incoming stream is attached to the "received_video" <video> element, and the
"Hang Up" <button> element is enabled so the user can hang up the call.

Once this code has completed, finally the video being sent by the other peer is displayed in the
local browser window!

Handling the removal of tracks

Your code receives a removetrack event when the remote peer removes a track from the
connection by calling RTCPeerConnection.removeTrack() . Our handler for
"removetrack" is:

This code fetches the incoming video MediaStream from the "received_video"
<video> element's srcobject attribute, then calls the stream's getTracks() method to
get an array of the stream's tracks.

function handleTrackEvent(event) {
 document.getElementById("received_video").srcObject = event.streams[0];
 document.getElementById("hangup-button").disabled = false;
}

1
2
3
4

function handleRemoveTrackEvent(event) {
 var stream = document.getElementById("received_video").srcObject;
 var trackList = stream.getTracks();

 if (trackList.length == 0) {
 closeVideoCall();
 }
}

1
2
3
4
5
6
7
8

https://developer.mozilla.org/en-US/docs/Web/Events/negotiationneeded
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/addTrack
https://developer.mozilla.org/en-US/docs/Web/Events/track
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button
https://developer.mozilla.org/en-US/docs/Web/Events/removetrack
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/removeTrack
https://developer.mozilla.org/en-US/docs/Web/API/MediaStream
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video%23attr-srcobject
https://developer.mozilla.org/en-US/docs/Web/API/MediaStream/getTracks

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 19 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

If the array's length is zero, meaning there are no tracks left in the stream, we end the call by
calling closeVideoCall() . This cleanly restores our app to a state in which it's ready to start
or receive another call. See Ending the call to learn how closeVideoCall() works.

Ending the call

There are many reasons why calls may end. A call might have completed, with one or both
sides having hung up. Perhaps a network failure has occurred, or one user might have quit
their browser, or had a system crash. In any case, all good things must come to an end.

Hanging up

When the user clicks the "Hang Up" button to end the call, the hangUpCall() function is
called:

hangUpCall() executes closeVideoCall() to shut down and reset the connection and
release resources. It then builds a "hang-up" message and sends it to the other end of the
call to tell the other peer to neatly shut itself down.

Ending the call

The closeVideoCall() function, shown below, is responsible for stopping the streams,
cleaning up, and disposing of the RTCPeerConnection object:

function hangUpCall() {
 closeVideoCall();
 sendToServer({
 name: myUsername,
 target: targetUsername,
 type: "hang-up"
 });
}

1
2
3
4
5
6
7
8

function closeVideoCall() {
 var remoteVideo = document.getElementById("received_video");
 var localVideo = document.getElementById("local_video");

 if (myPeerConnection) {
 myPeerConnection.ontrack = null;
 myPeerConnection.onremovetrack = null;
 myPeerConnection.onremovestream = null;
 myPeerConnection.onicecandidate = null;
 myPeerConnection.oniceconnectionstatechange = null;
 myPeerConnection.onsignalingstatechange = null;
 myPeerConnection.onicegatheringstatechange = null;
 myPeerConnection.onnegotiationneeded = null;

 if (remoteVideo.srcObject) {
 remoteVideo.srcObject.getTracks().forEach(track => track.stop());
 }

 if (localVideo.srcObject) {

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 20 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

After pulling references to the two <video> elements, we check if a WebRTC connection
exists; if it does, we proceed to disconnect and close the call:

1. All of the event handlers are removed. This prevents stray event handlers from being
triggered while the connection is in the process of closing, potentially causing errors.

2. For both remote and local video streams, we iterate over each track, calling the
MediaStreamTrack.stop() method to close each one.

3. Close the RTCPeerConnection by calling myPeerConnection.close() .

4. Set myPeerConnection to null , ensuring our code learns there's no ongoing call; this
is useful when the user clicks a name in the user list.

Then for both the incoming and outgoing <video> elements, we remove their src and
srcobject attributes using their removeAttribute() methods. This completes the
disassociation of the streams from the video elements.

Finally, we set the disabled property to true on the "Hang Up" button, making it unclickable
while there is no call underway; then we set targetUsername to null since we're no longer
talking to anyone. This allows the user to call another user, or to receive an incoming call.

Dealing with state changes

There are a number of additional events you can set listeners for which notifying your code of a
variety of state changes. We use three of them: iceconnectionstatechange ,
icegatheringstatechange , and signalingstatechange .

ICE connection state

iceconnectionstatechange events are sent to the RTCPeerConnection by the ICE
layer when the connection state changes (such as when the call is terminated from the other
end).

 if (localVideo.srcObject) {

 localVideo.srcObject.getTracks().forEach(track => track.stop());
 }

 myPeerConnection.close();
 myPeerConnection = null;
 }

 remoteVideo.removeAttribute("src");
 remoteVideo.removeAttribute("srcObject");
 localVideo.removeAttribute("src");
 remoteVideo.removeAttribute("srcObject");

 document.getElementById("hangup-button").disabled = true;
 targetUsername = null;
}

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

function handleICEConnectionStateChangeEvent(event) {
 switch(myPeerConnection.iceConnectionState) {

1
2

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamTrack/stop
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/close
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video%23attr-src
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video%23attr-srcobject
https://developer.mozilla.org/en-US/docs/Web/API/Element/removeAttribute
https://developer.mozilla.org/en-US/docs/Web/Events/iceconnectionstatechange
https://developer.mozilla.org/en-US/docs/Web/Events/icegatheringstatechange
https://developer.mozilla.org/en-US/docs/Web/Events/signalingstatechange
https://developer.mozilla.org/en-US/docs/Web/Events/iceconnectionstatechange
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 21 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

Here, we apply our closeVideoCall() function when the ICE connection state changes to
"closed" or "failed" . This handles shutting down our end of the connection so that we're
ready start or accept a call once again.

Note: We don't watch the disconnected signaling state here as it can indicate

temporary issues and may go back to a connected state after some time. Watching it

would close the video call on any temporary network issue.

ICE signaling state

Similarly, we watch for signalingstatechange events. If the signaling state changes to
closed , we likewise close the call out.

Note: The closed signaling state has been deprecated in favor of the closed

iceConnectionState . We are watching for it here to add a bit of backward

compatibility.

ICE gathering state

icegatheringstatechange events are used to let you know when the ICE candidate
gathering process state changes. Our example doesn't use this for anything, but it can be
useful to watch these events for debugging purposes, as well as to detect when candidate
collection has finished.

 switch(myPeerConnection.iceConnectionState) {
 case "closed":
 case "failed":
 closeVideoCall();
 break;
 }
}

2

3
4
5
6
7
8

function handleSignalingStateChangeEvent(event) {
 switch(myPeerConnection.signalingState) {
 case "closed":
 closeVideoCall();
 break;
 }
};

1
2
3
4
5
6
7

function handleICEGatheringStateChangeEvent(event) {
 // Our sample just logs information to console here,
 // but you can do whatever you need.
}

1
2
3
4

https://developer.mozilla.org/en-US/docs/Web/Events/signalingstatechange
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/iceConnectionState
https://developer.mozilla.org/en-US/docs/Web/Events/icegatheringstatechange

8/29/20, 6:51 PMSignaling and video calling - Web APIs | MDN

Page 22 of 22https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

Last modified: Jul 17, 2020, by MDN contributors

You can now try out this example on Glitch to see it in action. Open the Web console on both
devices and look at the logged output—although you don't see it in the code as shown above,
the code on the server (and on GitHub) has a lot of console output so you can see the signaling
and connection processes at work.

Another obvious improvement would be to add a "ringing" feature, so that instead of just asking
the user for permission to use the camera and microphone, a "User X is calling. Would you like
to answer?" prompt appears first.

WebRTC API

Web media technologies

Guide to media types and formats on the web

Media Capture and Streams API

Media Capabilities API

MediaStream Recording API

The Perfect Negotiation pattern

Next steps

See also

Learn the best of web development
Get the latest and greatest from MDN delivered straight to your inbox.

you@example.com

Sign up now

https://wiki.developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling$history
https://webrtc-from-chat.glitch.me/
https://github.com/mdn/samples-server/tree/master/s/webrtc-from-chat
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/Media
https://developer.mozilla.org/en-US/docs/Web/Media/Formats
https://developer.mozilla.org/en-US/docs/Web/API/Media_Streams_API
https://developer.mozilla.org/en-US/docs/Web/API/Media_Capabilities_API
https://developer.mozilla.org/en-US/docs/Web/API/MediaStream_Recording_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Perfect_negotiation

