RTClceCandidate.usernameFragment - Web APIs | MDN 8/29/20, 6:50 PM

MDN web docs

Technologies References Feedback
v & Guides v (O\ Search MDN) Sign in
v

RTCIceCandidate.usernameFragment

English ¥

Syntax

Usage notes
Example
Specifications

Browser compatibility

Related Topics

WebRTC API
RTCIceCandidate
v Constructor

RTCIceCandidate()

v Properties

address
candidate
component
foundation
port

priority
protocol
relatedAddress
relatedPort
sdpMid
sdpMLineIndex

usernameFragment

v Methods

toJSON()

v Related pages for WebRTC
MediaDevices.getUserMedia
()

Navigator.mediaDevices

RTCCertificate

The read-only usernameFragment property on the RTCIceCandidate interface is a string
indicating the username fragment ("ufrag") that uniquely identifies a single ICE interaction
session.

This value is specified when creating the RTCIceCandidate by setting the corresponding
usernameFragment value in the RTCIceCandidateInit object when creating a new
candidate with new RTCIceCandidate (). Note that 24 bits of the username fragment are
required to be randomized by the browser. See Randomization below for details.

If you instead call RTCIceCandidate () with a string parameter containing the candidate
m-line text, the value of usernameFragment is extracted from the m-line.

Syntax

var ufrag = RTCIceCandidate.usernameFragment;

A DOMString containing the username fragment (usually referred to in shorthand as "ufrag” or
"ice-ufrag") that, along with the ICE password ("ice-pwd"), uniquely identifies a single ongoing
ICE interaction, including for any communication with the STUN server. The string may be up to
256 characters long, and has no default value.

Randomization

At least 24 bits of the text in the ufrag are required to be randomly selected by the ICE layer
at the beginning of the ICE session. The specifics for which bits are random and what the
remainder of the ufrag text are are left up to the browser implementation to decide. For
example, a browser might choose to always use a 24-character ufrag in which bit 4 of each
character is randomly selected between 0 and 1. Another example: it might take a user-defined
string and append three 8-bit random bytes to the end. Or perhaps every character is entirely
random.

https://developer.mozilla.org/en-US/docs/Web/API/RTClceCandidate/usernameFragment Page 1 of 4

https://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/users/account/signup-landing?next=/en-US/docs/Web/API/RTCIceCandidate/usernameFragment
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidateInit/usernameFragment
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidateInit
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate/RTCIceCandidate
https://developer.mozilla.org/en-US/docs/Web/API/DOMString
https://developer.mozilla.org/en-US/docs/Glossary/STUN
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate/RTCIceCandidate
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate/address
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate/candidate
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate/component
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate/foundation
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate/port
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate/priority
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate/protocol
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate/relatedAddress
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate/relatedPort
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate/sdpMid
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate/sdpMLineIndex
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate/toJSON
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/mediaDevices
https://developer.mozilla.org/en-US/docs/Web/API/RTCCertificate

RTCDTMFSender
RTCDTMFToneChangeEvent
RTCDataChannel
RTCDataChannelEvent
RTCDtlsTransport
RTCErrorEvent
RTCIceTransport
RTCPeerConnection

RTCPeerConnectionIceError
Event

RTCPeerConnectionIceEvent
RTCRtpReceiver
RTCRtpSender
RTCRtpTransceiver
RTCSctpTransport
RTCSessionDescription
RTCStatsEvent
RTCStatsReport

RTCTrackEvent

RTClceCandidate.usernameFragment - Web APIs | MDN

8/29/20, 6:50 PM

Usage notes

ICE uses the usernameFragment and password to ensure message integrity. This avoids
crosstalk among multiple ongoing ICE sessions, but, more importantly, helps secure ICE
transactions (and all of WebRTC by extension) against attacks that might try to inject
themselves into an ICE exchange.

Note: There is no API to obtain the ICE password, for what should be fairly obvious security

reasons.

The usernameFragment and password both change every time an ICE restart occurs.

Example

Although the WebRTC infrastructure will filter out obsolete candidates for you after an ICE
restart, you can do it yourself if you're trying to absolutely minimize the number of messages
going back and forth.

To do so, you can compare the value of usernameFragment to the current
usernameFragment being used for the connection after receiving the candidate from the
signaling server and before caling addIceCandidate () to add it to the set of possible
candidates.

When the web app receives a message from the signaling server that includes a candidate to
be added to the RTCPeerConnection, you can (and generally should) simply call
addIceCandidate(). There's not typically a need to manually worry about filtering the
candidates.

However, let's imagine that we do need to minimize traffic. The function below,
ssNewCandidate(), is called when a message, signalMsg, arrives from the signaling
server that contains an ICE candidate to be added to the RTCPeerConnection. To avoid
including candidates obsoleted by an ICE restart, we can use code like this:

https://developer.mozilla.org/en-US/docs/Web/API/RTClceCandidate/usernameFragment

1 | const ssNewCandidate = signalMsg => {

2 let candidate = new RTCIceCandidate(signalMsg.candidate);
3 let receivers = pc.getReceivers();

4

5 receivers.forEach(receiver => {

6 let parameters = receiver.transport.getParameters();

7

8 if (parameters.usernameFragment === candidate.usernameFragment) {
9 return;

10 3

11 3

Page 2 of 4

https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Session_lifetime%23ICE_restart
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/addIceCandidate
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCCertificate
https://developer.mozilla.org/en-US/docs/Web/API/RTCDTMFSender
https://developer.mozilla.org/en-US/docs/Web/API/RTCDTMFToneChangeEvent
https://developer.mozilla.org/en-US/docs/Web/API/RTCDataChannel
https://developer.mozilla.org/en-US/docs/Web/API/RTCDataChannelEvent
https://developer.mozilla.org/en-US/docs/Web/API/RTCDtlsTransport
https://developer.mozilla.org/en-US/docs/Web/API/RTCErrorEvent
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceTransport
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnectionIceErrorEvent
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnectionIceEvent
https://developer.mozilla.org/en-US/docs/Web/API/RTCRtpReceiver
https://developer.mozilla.org/en-US/docs/Web/API/RTCRtpSender
https://developer.mozilla.org/en-US/docs/Web/API/RTCRtpTransceiver
https://developer.mozilla.org/en-US/docs/Web/API/RTCSctpTransport
https://developer.mozilla.org/en-US/docs/Web/API/RTCSessionDescription
https://developer.mozilla.org/en-US/docs/Web/API/RTCStatsEvent
https://developer.mozilla.org/en-US/docs/Web/API/RTCStatsReport
https://developer.mozilla.org/en-US/docs/Web/API/RTCTrackEvent

RTClceCandidate.usernameFragment - Web APIs | MDN 8/29/20, 6:50 PM

12

13 pc.addIceCandidate(candidate)
14 .catch(reportError);

15 | }

This walks through the list of the RTCRtpReceiver objects being used to receive ICE data,
and looks to see if the usernameFragment indicated in the candidate matches any of them. If
it does, ssNewCandidate () aborts. Otherwise, after checking every receiver, it adds the new
candidate to the connection.

Specifications

Specification Status Comment

WebRTC 1.0: Real-time Communication Between
Browsers | CR Candidate Initial
The definition of 'RTClceCandidate.usernameFragment' in that Recommendation definition.

specification.

Browser compatibility

Update compatibility data on GitHub

g ke
- | 28| = B
o > o = o c
= 2 c e =
9 2|l < | | 8|l | &
a Q o < e c
x (<] o o < ~ -_
1] 2 W o 5 c o
I x ko) g o | L= o 5
E o c © = 6 E [e) © = (2]
o (0] y= = = @© et o w— = ©
= (e)] () [0) [y— © = (0] [} y— E
£ ke = = Q ®© c < = Q @© ®
O L (I £ ©) () < O L o 0 N
usernameFragment 74 | <79 | 67 No ? ? 74 74 67 ? ? 11.0
Full support No support

|:| Compatibility unknown

https://developer.mozilla.org/en-US/docs/Web/API/RTClceCandidate/usernameFragment Page 3 of 4

https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate/usernameFragment%23
https://github.com/mdn/browser-compat-data
https://developer.mozilla.org/en-US/docs/Web/API/RTCRtpReceiver
https://w3c.github.io/webrtc-pc/%23dom-rtcicecandidate-usernamefragment

RTClceCandidate.usernameFragment - Web APIs | MDN

Last modified: May 7, 2019, by MDN contributors

8/29/20, 6:50 PM

Learn the best of web development

Get the latest and greatest from MDN delivered straight to your inbox.

https://developer.mozilla.org/en-US/docs/Web/API/RTClceCandidate/usernameFragment

you@example.com

Sign up now

Page 4 of 4

https://wiki.developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate/usernameFragment$history

